top of page

QUICK LINKS

hazard square.png
global seismic risk mosaic map.png
exposure square.png
vulnerability square.png
banner country profiles.png
Piles of Books
OQ-Logo-Simple-RGB-72DPI-01.png

PROFILES

PUBLICATIONS

EXPOSURE

VULNERABILTY

SOFTWARE

EQ MODELS

Search Results

1041 results found with an empty search

  • BEYOND BUTTON PUSHING | Global Earthquake Model Foundation

    Projects BEYOND BUTTON PUSHING Earthquake Risk Assessment and Sensitivity Analysis for California Versión en español English version Share Facebook LinkedIn Overview Anchor 6 Background The goal of the project was to show how important the quantification of uncertainty is in estimating and understanding California’s earthquake risk using OpenQuake - GEM Foundation’s state-of-the-art open source earthquake hazard and risk assessment software. With OpenQuake’s plug-and-play capabilities, expert users can individually select or substitute every model component, data, and assumption. This feature will help model users and decision makers to: 1) ‘ask the right questions’ when evaluating model results; 2) better interpret risk assessment results and gain trust in model results; and 3) make better risk management decisions. Duration: 2015-2017 Objectives The main objectives of this project are to: Establish representative sets of exposure: ‣ for the San Francisco Bay Area; ‣ for the Southern California region affected by the Shakeout Scenario Choose specific results (risk metrics) to use as a basis for comparison. Produce ‘baseline’ results from OpenQuake, using a ‘control’ set of assumptions. Undertake a thorough sensitivity analysis for the risk estimates for California based on the UCERF3 model by running OpenQuake multiple times, each time varying one assumption or parameter, such as: ‣ earthquake probabilities (controlled by assumptions about fault geometries, slip rates, maximum magnitudes); ‣ ground motion model selection; ‣ vulnerability functions; ‣ site conditions; and ‣ statistical treatment of uncertainty and correlation Beyond the aims stated at the outset of the project as listed above, several additional objectives were achieved during the course of the project, including the following: Implement within OpenQuake the latest seismic hazard model for California based on the recently published Uniform California Earthquake Rupture Forecast version 3 (UCERF3), produced by the U.S. Geological Survey and the Working Group on California Earthquake Probabilities. Calculate the average annual loss estimates for all 8,057 census tracts in California, using the seismic hazard model based on UCERF3. Establish the range (distribution) of scientifically viable results for the chosen risk metrics by accounting for the various uncertainties in the hazard model. Identify the components of the hazard model contributing most to the overall uncertainty in the risk metrics for the different exposure portfolios. Implement a model simplification (‘logic-tree trimming’) software tool to reduce the number of computer runs and greatly speed up the time required for running the risk model for California. Collaborators GEM Foundation Funding partner: Alfred E. Alquist Seismic Safety Commission (SSC) Location California, United States Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

  • MONGOLIA DRR | Global Earthquake Model Foundation

    Projects MONGOLIA DRR Strengthening capacity on disaster risk assessment, reduction and transfer instruments in Mongolia Versión en español English version Share Facebook LinkedIn Overview Anchor 6 Background This project aims to support Mongolia in developing a set of key disaster risk information and knowledge products for mainstreaming Disaster Risk Management (DRM) into development, including Disaster Risk Financing and Insurance (DRFI). A hazard and risk assessment is conducted at the national and provincial levels and Disaster Risk Reduction (DRR) is promoted for resilience within development and DRFI, and to strengthen the capacity and ability of NEMA, ministries, local government officials and communities to better understand and plan for disaster risks. The project is made up of the following four main components: Conducting multi-hazard disaster risk assessments at the national and local levels; Facilitation of Disaster Reduction planning and mainstreaming through the preparation and delivery of a DRR training program; Development of a strategy for disaster risk financing and revision of the national draft disaster risk insurance law; and Building institutional, technical, and management capacity for DRR and DRF The GEM Risk Team's main contribution to the project is the development of a significantly improved exposure model for Mongolia, based on the latest population and housing census of Mongolia, and a probabilistic seismic risk analyses, making use of GEM's global seismic hazard mosaic. Duration: 2022-2023 Objective The project is implemented in close collaboration with Mongolia’s National Emergency Management Agency (NEMA) and the Department of Disaster Risk Management (DRMD), who are the executing agency and the implementing agency respectively. The Ministry of Finance is also engaged in strengthening DRF and insurance options. This project advances Mongolia’s progress in addressing the Sendai Framework on Disaster Risk Reduction (DRR) priorities by improving the institutional capacities of key ministries and local governments; enhancing understanding of risk; strengthening disaster risk governance; and investing in DRR for resilience through promoting mechanisms for disaster risk transfer, risk-sharing, and insurance. Collaborators GEM Foundation, ICEM Asia Consulting, PwC India, Environ LLC, Willis Towers Watson (WTW), JBA Group, Overseas Development Institute Funding partner: Funded by the Japan Fund of Poverty and Reduction and administered by the Asian Development Bank (ADB) Location Mongolia Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

  • METIS | Global Earthquake Model Foundation

    Projects METIS Methods and Tools Innovation for Seismic Risk Assessment Versión en español English version Share Facebook LinkedIn Overview Outcomes Training Outreach Photos Publications Anchor 6 Background GEM is set to start a 3-year project called METIS or Methods and Tools Innovation for Seismic Risk Assessment funded by the European Commission. The project is part of the Safety margins determination for design basis-exceeding external hazards program. Electricite De France (EDF), a GEM technical collaborator, is coordinating the project which will be implemented in collaboration with 14 other organizations. GEM will contribute to the task on seismic hazard assessment and on PSA Tools and Methodology. In the hazard task, GEM will implement into the OQ Engine methods such as vector-valued probabilistic seismic hazard analysis (PSHA), cluster-based PSHA as well as new methods to propagate epistemic uncertainties. Research will also be carried out in the context of processing earthquake catalogues to remove aftershocks and foreshocks and on testing PSHA models. GEM’s contribution to the PSA Tools and Methodology will concentrate on testing risk results. Duration: 2020 - 2025 More details: https://metis-h2020.eu/ Objectives The objective of METIS is to translate research into practice through rigorous and efficient methodologies and tools to assess seismic safety of NPP (nuclear power plants). It also aims to innovate current practice by combining simulation with experimental data. The research will develop methods to improve the ability to define safety limits for extremely rare events, which go beyond current design analyses (i.e. design extension for earthquakes). The refined seismic PSA (probabilistic safety assessment) is expected to provide meaningful support in defining regulations for safe design of NPP, as well as for assessing plant safety in real-time in case of temporary unavailability of relevant safety equipment or structures. Collaborators Edf Energy R&D UK Centre Limited - United Kingdom Limited Liability Company Energorisk - Ukraine Helmholtz Zentrum Potsdam Deutschesgeoforschungszentrum Gfz - Germany Geodynamique Et Structure - France Institut De Radioprotection Et De Surete Nucleaire - France Istituto Universitario Di Studi Superiori Di Pavia - Italy Lgi Consulting - France National Technical University of Athens – NTUA - Greece State Enterprise State Scientific and Technical Center For Nuclear And Radiation Safety - Ukraine Technische Universitat Kaiserslautern - Germany Univerza V Ljubljani - Slovenia Geo-Research Institute - Japan North Carolina State University - United States The Regents of The University Of California - United States Location Europe Horizon 2020 METIS Project fact sheet Anchor 1 Anchor 5 Anchor 4 EdF and GEM METIS project collaboration from 2020 to 2024. New Horizon 2020 project launched to develop an advanced approach for Seismic Risk Assessment of Nuclear Power Plants Anchor3 Publications

  • MALAWI MULTI-HAZARD | Global Earthquake Model Foundation

    Projects MALAWI MULTI-HAZARD Comprehensive Multi hazard Risk Assessment in Malawi Versión en español English version Share Facebook LinkedIn Overview Outcomes Training Outreach Photos Publications Anchor 6 Background Malawi is a country strongly affected by the impact of extreme events, exacerbated by rapid population growth and urbanisation. A multi-risk assessment is currently lacking at the national level, while it is available only at the local level in some districts. Therefore, the project consortium intends to produce, for the first time, hazard and risk maps on a national level with a level of detail useful also at provincial level, using a probabilistic risk assessment approach, both for single hazards and for multi-hazard conditions (i.e. extreme winds and precipitation, earthquakes, landslides, river floods). The GEM Risk Team is reponsible for the seismic risk assessment, comprising the modelling of the hazard, exposure and vulnerability components and the calculations of seismic risk in the OpenQuake engine. Duration: 2023-2024 Objectives In line with the guidelines of the Sendai Framework for Disaster Risk Reduction, the multi-hazard probabilistic assessment carried out within the project provides risk estimates for both the most probable and frequent events, as well as for rare ones; at the same time, it allows for the analysis of events that have never been observed but may occur in the future, which is of particular importance considering the uncertainty caused by climate change. The assessment will therefore consider risks under current climate conditions as well as future conditions (2050-2100) under different climate change scenarios. For the realisation of the multi-risk assessment, the project partners will work closely with local stakeholders at all stages of the development, from data collection to the creation of the Risk Atlas and the Risk Information Web Platform, two tools that will collect information from the assessment and will make it easier to communicate and understand, thus following a capacity development approach that combines knowledge development with knowledge transfer. In addition, the partners will develop, again in collaboration with local stakeholders, a sustainability plan containing recommendations for maintaining and updating risk information, supporting the management, updating and accessibility of Malawi’s risk information by national and local authorities. Collaborators GEM Foundation, Centro Internazionale in Monitoraggio Ambientale (CIMA), Malawi University of Business and Applied Sciences (MUBAS), British Geological Survey (BGS) Funding partner: World Bank Group Location Malawi Aiming to empower Malawi with a comprehensive understanding of disaster risks, the project will deliver the following key outputs: Comprehensive Hazard Identification and Assessment: A national-level assessment of various hazards in Malawi, including floods, droughts, landslides, earthquakes, and strong winds. Exposure Mapping: Creation of maps outlining the extent to which people, infrastructure, buildings, and agriculture are exposed to each hazard. Vulnerability Assessment: Evaluation of the physical (infrastructure, buildings) and social (poverty, access to resources) vulnerabilities of Malawian communities to these hazards. National Hazard and Risk Profiles: Development of comprehensive national profiles that detail the hazards, their potential impacts, and the level of risk faced by different regions and communities. Knowledge and Technology Transfer: Training and capacity building for Disaster Risk Reduction (DRR) practitioners and academic institutions in Malawi on using the multi-hazard risk assessment data and tools. Anchor 1 Anchor 5 Platform deployment, knowledge transfer, maintenance and ownership This project builds a long-term plan for Malawian experts to manage the multi-hazard risk atlas database. Through trainings and knowledge transfer, local technicians will become self-sufficient in maintaining the system and training future users. This ensures the platform's sustainability and empowers Malawian authorities to fully utilize the risk information for informed decision-making. a. Hands-on training on the Risk Atlas Database Training of the Department of Disaster Management Affairs (DODMA) ICT team to install and utilise the Risk Atlas Database held in Salima, Malawi, from June 3-7, 2024. b. Exposure and Vulnerability Data The exposure and vulnerability work was delivered to the client and presented in a dedicated training session in November 2023. Anchor 4 GEM Contributes to Multi-Hazard Risk Assessment Progress in Malawi The Global Earthquake Model (GEM) Foundation actively participated in a Multi-Hazard Risk Assessment workshop held in Salima, Malawi, from June 3-7, 2024. This collaborative effort involved the Department of Disaster Management Affairs (DODMA) as the host, alongside the International Centre for Environmental Monitoring (CIMA Research Foundation), Malawi University of Business and Applied Sciences (MUBAS), and the British Geological Survey (BGS). Read more Anchor3 BUSINESS NEWS Multi-Hazard Risk Assessment workshop held in Salima, Malawi, from June 3-7, 2024 1/6 Publications

  • BACK TO NORMAL | Global Earthquake Model Foundation

    Projects BACK TO NORMAL Earthquake Recovery Modelling Versión en español English version Share Facebook LinkedIn Overview Anchor 6 Background To address some of the key factors that influence recovery following a potentially devastating earthquake, the Alfred E. Alquist Seismic Safety Commission (SSC) engaged the GEM (Global Earthquake Model) Foundation and the University of California at Los Angeles (UCLA), Department of Civil and Environmental Engineering, a) to develop a methodology and an open-source and transparent software tool to estimate recovery states and recovery times following an earthquake; and b) to investigate the effect of external socio-economic factors on these recovery times. Objectives This project achieved the following main objectives: 1. Development of a user-friendly, non-commercial and transparent software tool, herein referred as the Integrated Risk Modelling Toolkit (IRMT), to make map-based comparisons showing the effect of different resilient actions on the recovery times. 2. Development of an analytic methodology, referred as the Reconstruction Recovery Model, to estimate post-earthquake recovery 3. Integration of the Reconstruction Recovery Model for practical use into GEM’s OpenQuake modelling platform. 4. Demonstration of reasonable results by using the methodologies to model past earthquakes. In this context, the 2014 M6 South Napa Earthquake was used as a case study. Collaborators Department of Civil and Environmental Engineering at the University of California at Los Angeles (UCLA) Location California, United States Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

  • EPOS ON | Global Earthquake Model Foundation

    Projects EPOS ON European Plate Observing System-Optimisation and EvolutioN (EPOS ON) Project Versión en español English version Share Facebook LinkedIn Background Anchor 6 Background The European Plate Observing System-Optimisation and EvolutioN (EPOS ON) project, a collaborative initiative involving a consortium of 34 partners across 18 countries aims to support the optimisation and evolution of the EPOS Research Infrastructure (EPOS RI) by enhancing the interoperability, accessibility, and integration of various datasets for effective risk management and resilience against natural hazards. The project is led and coordinated by EPOS ERIC with funding support from the European Union (EU) under the Horizon Europe program, and will be implemented across various geographic locations within Europe and may extend its partnerships to other regions globally. Duration: September 1, 2024 to August 31, 2024 More details: https://www.epos-eu.org/on . Expected Key Outputs GEM work packages (WP) include scientific products that support risk management: WP3 Contribution to Tackle Societal Challenges - Enhancement of existing EPOS services for improved risk management for natural hazards, supported by dialogue with the EU Union Civil Protection Knowledge Network (UCPKN). Data products and services for rapid post-event assessment: this includes the improvement of existing tools (e.g., European ShakeMap service) for rapid post-event assessment of earthquake impacts and associated secondary hazards (e.g. liquefaction), tools to predict population dynamics in the immediate aftermath of a disaster, and databases of damage-dependent seismic vulnerability models for European buildings. WP5 Enlarging European and International Collaborations - Establishment of collaborative partnerships with relevant research infrastructures to promote synergies and expand global access to EPOS services and data. Support for the expansion of the existing European seismic risk services to include maps representing the environmental impact associated with earthquakes in terms of equivalent carbon dioxide (eCO2) emissions arising from damage and subsequent repair activities. Collaborators EPOS ON includes 34 partners from 18 countries, which represent not only research and academy, but also private sector companies and new communities. Funding partner: EPOS ON is funded by the EC Horizon Europe programme under G.A. n 101131592 Location Europe Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

  • AELO | Global Earthquake Model Foundation

    Projects AELO ASCE Earthquake Loads Overseas (AELO) Versión en español English version Share Facebook LinkedIn Overview Anchor 6 Background The project is carried out within a collaboration between GEM and the U.S. Geological Survey (USGS) and is sponsored by the U.S. Department of State (DoS) and the U.S. Department of Defence (DoD). The aim of the project is to provide a web service for computing design ground motions (on rock and soil) that are compliant with the ASCE guidelines (ASCE 7-16, ASCE 41-17, ASCE 7-22, ASCE 41-23) for 500 locations worldwide. In its inaugural year, AELO focuses on rigorously calculating seismic parameters, including Peak Ground Acceleration (PGA), Ss, and S1 design values across 500 diverse global locations, particularly emphasizing rock site conditions. This aims to ensure compliance with ASCE7-16 and ASCE41-17 standards, essential for seismic assessment and design practices. In the following year, the project progresses to establish a secure webservice for computing design ground motions. This password-protected platform will provide access to ASCE7-16 and ASCE41-17 aligned calculations, simplifying access to these critical seismic design parameters. Transitioning into the third year, AELO expands its computational scope to encompass ground motion calculations across various soil conditions worldwide, encompassing 500 locations to adhere to ASCE 7-22 and ASCE 41-23 standards. This phase seeks to enhance the breadth of seismic assessments, offering a comprehensive understanding of seismic hazards on diverse soil types. Finally, in its fourth year, the project concludes with the introduction of a sophisticated, password-protected webservice. This platform offers the capability to compute design ground motions based on the latest ASCE7-22 and ASCE41-23 standards, supporting seismic engineers and researchers globally by providing accurate, standardized, and essential seismic design parameters for diverse geographical locations. Duration: 2022 - 2026 Objectives The primary objective of the project is to create a web service capable of calculating design ground motions, both on rock and soil, in adherence to the American Society of Civil Engineers (ASCE) guidelines. These guidelines include ASCE 7-16, ASCE 41-17, ASCE 7-22, and ASCE 41-23. This web service heavily relies on the hazard models that are part of GEM’s global mosaic and the OpenQuake Engine. Collaborators GEM, the U.S. Geological Survey (USGS), with support from the U.S. Department of State (DoS) and the U.S. Department of Defense (DoD). Location Global (Washington DC, USA) Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

  • BANGLADESH | Global Earthquake Model Foundation

    Projects BANGLADESH Earthquake Vulnerability and Systemic Risk Assessment in Bangladesh Versión en español English version Share Facebook LinkedIn Overview Outcomes Training Outreach Photos Publications Anchor 6 Background This project follows a specific support request made by the Ministry of Disaster Management and Relief (MoDMR) to the UN Office for Disaster Risk Reduction (UNDRR) and the UN Resident Coordinator’s Office (UNRCO) for a sub-national earthquake hazard and risk assessment in Bangladesh. The GEM Foundation has the role of technical expert lead of the project which will include the following activities: Needs and Gaps Assessment Technical Panel Formation and Initial Consultations Seismic Hazard Mapping Exposure Mapping Seismic Vulnerability Assessment Seismic Risk Mapping and Interpretation Stakeholder Consultation and Validation Preliminary Model Dissemination and Training Workshop Funding and technical partner: UNDRR Duration: 2023 - 2024 Objectives The main objective of this project is to develop a detailed, open, sub-national earthquake risk model and evaluate seismic risk for Bangladesh at the zila and upazila levels. The complete risk model will comprise a probabilistic seismic hazard model, a building exposure model, and a seismic fragility and vulnerability model for the building stock of Bangladesh. Additionally, it includes critical scenarios for key cities, identified based on the results of the probabilistic risk assessment and in consultation with local stakeholders and experts, in a panel led by the Ministry of Disaster Management and Relief (MoDMR), and including representatives from the Ministry of Housing and Public Works, Bangladesh Bureau of Statistics, Geological Survey of Bangladesh, Bangladesh University of Engineering and Technology, and University of Dhaka.` Collaborators In collaboration with the GEM Foundation, the Technical Panel steering this seismic risk assessment initiative is a collaborative assembly of key stakeholders and experts. Led by the Additional Secretary of Bangladesh's Ministry of Disaster Management and Relief (MoDMR), it comprises representatives from vital entities, including the Department Of Disaster Management (DDM), the Fire Service and Civil Defence of Bangladesh, the Ministry of Housing & Public Works (MoHPW), and the Statistics and Informatics Division (SID) of the Bangladesh Bureau of Statistics (BBS). In addition, the panel includes the participation of seasoned national experts specializing in seismic hazard and risk assessment from institutions such as the University of Dhaka (DU), Bangladesh University of Engineering and Technology (BUET), and Jahangirnagar University (JU). Further enriching the panel's knowledge base are contributions from the Geological Survey of Bangladesh, the Centre for Urban Studies (CUS), and the United Nations Development Programme (UNDP), Bangladesh.) Location Bangladesh Earthquake Hazard and Risk Assessment Results This section summarises the various assessments conducted to understand the potential impact of earthquakes in Bangladesh. These assessments cover a range of factors, including the likelihood and severity of ground shaking, liquefaction potential, exposure of people and buildings, vulnerability of infrastructure, and the overall seismic risk posed to the country. The following list details the outputs generated from each assessment. Bangladesh Profiles | Past Earthquakes **ALL RESULTS ARE PRELIMINARY AND UNDER REVIEW** a. Population and Building Exposure Exposure models play a critical role in seismic risk assessment by quantifying the potential exposure of buildings and infrastructure to earthquake hazards. These models are structured databases that catalogue the characteristics of buildings within a specific geographic area, including their location, construction material, age, occupancy type, and structural design. The depth and accuracy of this data directly influence the effectiveness of the seismic risk evaluations, as they allow for a detailed understanding of how different structures are likely to perform during an earthquake. Download Files b. Infrastructure Exposure In addition to residential, industrial, and commercial structures that were previously covered by GEM’s exposure models at the zila level (which have been updated to the upazila level during this project), we have also developed exposure models for the healthcare and educational facilities at the country, including all hospitals and clinics, and all schools, colleges, and universities. Map | Profile c. Earthquake Scenarios The project also constructed the rupture geometries for these events, selected a range of ground motion models, and assessed the potential impact—both in terms of damage and losses—that each event could inflict on the country if it were to occur today. The full scenario set consists of twelve events: seven historical events from 1664-1918, chosen out of many in this period, supplemented by five hypothetical events. Download Files d. Probabilistic Seismic Hazard Assessment The seismic hazard modelling and mapping section describes the approach taken to assess the seismic hazard in Bangladesh with the goal of creating a comprehensive seismic hazard model for Bangladesh that can be used for risk assessment and mitigation. The project started with a probabilistic seismic hazard model for the Indian subcontinent, which was updated and implemented for the OpenQuake engine. The model includes seismogenic source models, ground motion models, and considers various tectonic regions. This section also mentions the review of the seismic source model for northeast India and the improvements made to the model. Download Files e. Liquefaction Hazard Assessment The section "Liquefaction susceptibility and hazard assessment" discusses the inclusion of regional liquefaction occurrence models in the project, which predict ground failure using existing mapped information and above-ground inferences of below-ground conditions. These models were used for the national scale liquefaction hazard assessment in the second phase of the project identifying the factors that contribute to liquefaction, the methods used for assessment, and the potential damage and losses that can result from liquefaction. Download Files f. Seismic Risk Assessment The project estimated seismic risk metrics utilising the OpenQuake-engine's stochastic event-based risk assessment calculator. A probabilistic seismic hazard analysis model was employed to generate earthquake rupture forecasts, forming a stochastic event set over a 100,000-year span. Economic and human losses were computed for each event, producing event loss tables and year loss tables. Risk metrics included exceedance probability curves and average annualized losses. Fatality and injury estimates relied on vulnerability models informed by global earthquake data, with a focus on South Asian building characteristics. Results were tabulated nationally and regionally by the project. The assessment also considers the exposure and risk of healthcare facilities, educational facilities, and the national road network to seismic hazards. Download Files Anchor 1 Anchor 5 Improving global capacity for seismic hazard and risk This part of the program was designed to improve the understanding and awareness of earthquake hazard and risk, and to help bridge the gap between the information produced in detailed hazard and risk assessment studies and its communication to a wide variety of stakeholders (which range from local experts with the remit to assess seismic risk to decision-makers responsible for the implementation of risk reduction measures). a. Website for OpenQuake online training The OpenQuake online training was designed for different types of audiences with diverse backgrounds and expertise. Through this platform, participants interact with GEM scientific and technical teams to learn the main concepts of earthquake risk assessment, along with the basic features of the engine. [English ] b. Onsite Training Workshop One-day workshop designed to improve the understanding and awareness of earthquake hazard and risk and to help bridge the gap between the information produced in the project and its communication to a wide variety of stakeholders. The session allowed participants to explore and prepare the required input files for earthquake scenarios in the OpenQuake engine. OQ Engine Video Tutorials | English | Example Material Anchor 4 Communicating and raising earthquake risk awareness The activities in this component focused on raising the awareness of the public on earthquake hazard and risk by training a diverse group of disaster risk reduction (DRR) professionals together with personnel in charge of communicating risk to the public, and by conducting community-based workshops in selected areas of the pilot cities by those who were trained by the project. Speech by Domenico Scalpelli (WFP Representative) on the presentation of the Earthquake Risk Assessment Results The speech was delivered on March 6, 2024 at Six Season Hotel, Hall Room, Bunka, Bangladesh (10:00 am to 12:30 pm). "While Bangladesh has been fortunate to avoid a significant earthquake in the past century, historical data suggests earthquakes are a threat. This analysis, considering hazard, exposure, and vulnerability, provides a foundation for evidence-based decision-making to guide preventive measures, enhance preparedness, and fortify our ability to respond." Read more | UNDRR Bangladesh article a. GEM presentation to the Ministry of Disaster Management and Relief (MoDMR), Bangladesh This is an introductory presentation on Bangladesh's earthquake risk assessment project that outlines past efforts, emphasises the need for a nationwide evaluation, and introduces the GEM Foundation's methodology. It highlights completed division-level risk maps and ongoing project activities like data collection, vulnerability assessment, and stakeholder engagement. Additionally, five other presentations below will address different aspects of the project in Bangladesh. View Presentation b. Technical Panel Session #1 This presentation discusses the methodology used to collect and process data related to earthquake risk components such as hazard, exposure, and vulnerability. It also mentions the project activities and the formation of a technical panel for consultation and validation. View Presentation c. Technical Panel Session (PSHA) #2 This presentation is about the tailored version of the PSHA (Probabilistic Seismic Hazard Assessment) model for the Indian sub-continent, which is based on the original model developed by Nath and Thingbaijam in 2012. The presentation discusses the main areas identified for improvement in the model, the changes that were introduced, and the impact of these changes on the hazard results. View Presentation d. Technical Panel Session (Scenario Ruptures) #2 This presentation is about the hazard analysis of earthquakes in Bangladesh, including an overview of the fault systems, historical ruptures, and potential ruptures. It also mentions the ground motion models used for the analysis. View Presentation e. Technical Panel Session #3 This presentation focuses on exposure and physical and social vulnerability, as components of seismic risk. It discusses the details of exposure models, seismic vulnerability analysis, and social vulnerability. The presentation also mentions the use of the Global Earthquake Model (GEM) and the INFORM Index in assessing and understanding the seismic risk in Bangladesh. View Presentation f. Technical Panel Session (Scenarios and Risk) #4 This presentation details data collection and processing methods for seismic hazards, exposure, and vulnerability. It presents preliminary results on potential earthquake impacts like building collapse and economic loss using an 1885 event as an example. The presentation also mentions probabilistic risk assessment and division-level risk maps, alongside details about 12 "scenario ruptures" based on historical and potential earthquake events. View Presentation g. Technical Panel Session (Liquefaction) #4 This presentation focuses on factors such as soil liquefaction, susceptibility to ground failure, population density, urbanisation, and the country's river delta geography. It discusses various methodologies and models used to assess liquefaction hazard and suggests the use of geospatial methodologies for identifying areas with a higher likelihood of occurrence. View Presentation h. Final UNDRR-GEM Bangladesh - MoDMR Presentation This presentation summarises the findings of a sub-national earthquake hazard and risk assessment for Bangladesh, conducted by the Global Earthquake Model (GEM) Foundation in collaboration with MoDMR, UNDRR and UNRCO. It details the development of a comprehensive earthquake risk model for Bangladesh at the district and sub-district levels. The presentation covers the methodologies employed, including assessments of seismic hazard, exposure, and vulnerability. Stakeholder engagement and the final earthquake risk model for Bangladesh are also presented. View Presentation Videos - Ruptures, PSHA and Liquefaction The Global Earthquake Model (GEM) Foundation presents insights into the Bangladesh earthquake risk assessment project. These presentations will explore scenario earthquakes, a customized seismic hazard model, and the assessment of earthquake-induced liquefaction hazards. 1. Scenario earthquakes for Bangladesh hazard and risk analysis by Richard Styron This presentation explores the concept of scenario earthquakes and their role in analysing earthquake hazards and risks in Bangladesh. Richard Styron will discuss the specific scenarios considered for Bangladesh, providing insights for understanding potential earthquake impacts. Watch 2. PSHA Model for Indian sub-continent: tailored version of Nath and Thingbaijam (2012) by Kendra Johnson Kendra Johnson will present a tailored version of the PSHA (Probabilistic Seismic Hazard Assessment) model developed by Nath and Thingbaijam (2012) for the Indian subcontinent. This presentation will explain how this model has been adapted to provide a more accurate assessment of earthquake hazards specific to Bangladesh. Watch 3. Earthquake-induced liquefaction hazard assessment: scenario and probabilistic analysis by Lana Todorovic This presentation by Lana Todorovic focuses on earthquake-induced liquefaction, a major concern in Bangladesh due to its river delta geography. Lana will discuss both scenario-based and probabilistic approaches to assessing liquefaction hazard, providing valuable information for mitigating this specific earthquake risk. Watch Anchor3 BUSINESS NEWS March 6 presentation Humanitarian Organisations 1/2 BUSINESS NEWS March 5 OpenQuake Training 1/4 BUSINESS NEWS March 4 presentation 1/1 BUSINESS NEWS March 3 meeting with MoDRM 1/2 BUSINESS NEWS Images from online meetings: September to December 2023 1/1 Publications Interim Substantive Reports The documents below are interim substantive reports on the project "Earthquake Vulnerability and Systemic Risk Assessment in Bangladesh". The main objective of the project is to develop a detailed earthquake risk model for Bangladesh at the zila and upazila levels. They describe the development of an open-source probabilistic seismic risk model for Bangladesh and provide key insights to decision-makers and stakeholders in the disaster risk mitigation community. a. First Interim Substantive Report This report highlights the need for a seismic risk model in the country and discusses the gaps and needs assessment. The report also explains the technical approach and methodology for developing the risk model, including seismic hazard modeling, liquefaction susceptibility and hazard assessment, exposure modeling, and seismic fragility and vulnerability modeling. The seismic risk assessment process is described, along with the formation of a technical panel and stakeholder engagement. Download the Report b. Second Interim Substantive Report This report provides updates on various aspects of the project, including the development of earthquake scenarios, liquefaction susceptibility and hazard assessment, exposure modeling, and social vulnerability modeling. The report mentions that the project has engaged a technical panel comprising key experts and stakeholders, and their feedback and suggestions are being incorporated into the project. The report also includes information on the distribution of hospitals, clinics, schools, and colleges in Bangladesh. Download the Report c. Final Report This report details the findings of a sub-national earthquake hazard and risk assessment for Bangladesh, undertaken by the Global Earthquake Model (GEM) Foundation. The project fulfills a specific request from the Ministry of Disaster Management and Relief (MoDMR) to the UN Office for Disaster Risk Reduction (UNDRR) and the UN Resident Coordinator's Office (UNRCO). The project aimed to develop a comprehensive earthquake risk model for Bangladesh at the district and subdistrict levels. This report details the activities undertaken, including needs assessment, technical consultations, hazard and exposure mapping, vulnerability assessment, risk analysis, stakeholder engagement, and final model dissemination. This assessment provides Bangladesh with crucial data to guide earthquake risk reduction efforts nationwide. Download the Report

  • Proyecto TREQ | Global Earthquake Model Foundation

    Projects Proyecto TREQ Comunicación y Formación en la Evaluación de Riesgos por Terremotos (TREQ) Versión en español English version Share Facebook LinkedIn Visión general Resultados Capacitación Comunicación Fotos Publicaciones Anchor 6 Resumen El Proyecto de Capacitación y Comunicación para la Evaluación de Riesgos de Terremotos (TREQ) fue diseñado para demostrar cómo la evaluación de la amenaza y el riesgo sísmico puede informar a los tomadores de decisiones en el desarrollo de políticas de reducción de riesgos, así como también cómo se puede comunicar adecuadamente el riesgo de terremotos a las partes interesadas y al público en general. [PDF Executive Summary English ] Objetivos El proyecto se organizó en dos partes principales. El primero tuvo como objetivo desarrollar la capacidad para la evaluación de la amenaza y el riesgo sísmico a nivel urbano en América Latina, Quito (Ecuador), Cali (Colombia) y Santiago de los Caballeros (República Dominicana); mientras que la segunda parte fue desarrollar material de capacitación, educación y comunicación para mejorar la comprensión del riesgo de terremotos en todo el mundo. El programa se diseñó para un amplio espectro de partes interesadas, categorizadas en cuatro grupos principales: gobierno(tomadores de decisiones/autoridades públicas), industria (practicantes y profesionales), academia (investigadores y profesores) y la comunidad. Ecuador Municipalidad de Quito Escuela Politécnica Nacional (EPN) Instituto Geofísico (IG) Colegio de Ingenieros Civiles de Pichincha (CICP) Pontificia Universidad Católica del Ecuador Dominican Republic Servicio Geológico Nacional (SGN) Oficina Nacional de Evaluación Sísmica y Vulnerabilidad de Infraestructuras y Edificaciones (ONESVIE) Comité Técnico Nacional (CTN) Pontificia Universidad Católica Madre y Maestra (PUCMM) Colombia Servicio Geológico Colombiano (SGC) Departamento Administrativo de Planeación Municipal (DAPM), Cali Unidad Nacional de Gestión del Riesgo de Desastres (UNGRD) Universidad EAFIT, Medellin Costa Rica Universidad de Costa Rica (UCR) Mexico Universidad Autónoma de Baja California (UABC) Ubicación Quito (Ecuador), Cali (Colombia) y Santiago de los Caballeros (República Dominicana) Evaluación del riesgo urbano en América Latina y el Caribe En este componente se generaron los siguientes entregables: evaluación de amenaza y riesgo sísmico a escala urbana para las tres ciudades TREQ: Quito (Ecuador), Cali (Colombia) y Santiago de los Caballeros (República Dominicana). Se desarrollaron modelos de vanguardia para cada ciudad en estrecha colaboración con socios locales. Los modelos de entrada y los resultados están disponibles en la siguiente dirección URL: [github.com/gem/treq-riesgo-urbano/ ] a. Informes de la ciudad Evaluación de Riesgo Sísmico para el Distrito Metropolitano de Quito [Español ] Evaluación de Riesgo Sísmico para Santiago de Cali [Español ] Evaluación de Riesgo Sísmico para Santiago de los Caballeros [Español ] b. Evaluación de peligros sísmicos Modelos probabilísticos de amenaza sísmica (PSHA) y conjuntos de datos para la evaluación de la amenaza a nivel urbano [PDF English ] Modelo Probabilístico de Amenaza Sísmica para la República Dominicana [PDF English | Español ] [Descargar Modelo ] Resultados de amenaza sísmica (condiciones en roca y en suelo [PDF English ] Análisis de la amenaza sísmica a escala urbana [PDF English ] c. Evaluación de Riesgo Sísmico Resumen ejecutivo sobre la evaluación del riesgo sísmico urbano para las ciudades de Quito, Cali y Santiago de los Caballeros [PDF English ] Tipologías constructivas en Quito, Cali and Santiago de los Caballeros [PDF Español ] Base de datos de exposición georreferenciada de población y edificios en cada ciudad de TREQ [Cali ] [Quito ] [Santiago ] Base de datos de funciones de fragilidad y vulnerabilidad para cada clase de edificio presente en el modelo de exposición [Datos ] Mapas y métricas de riesgo para cada ciudad [Cali ] [Quito ] [Santiago ] d. Escenarios de la ciudad Base de datos con rupturas seleccionadas para análisis de escenarios [Cali ] [Quito ] [Santiago ] Evaluación del escenarios de amenaza para sismos representativos en Quito, Cali y Santiago de los Caballeros [PDF English ] e. Aplicaciones Urbanas Deslizamientos y licuefacción inducidos por sismo en Cali [PDF English ] Anchor 1 Anchor 5 Mejora de la comprensión mundial sobre la amenaza y riesgo sísmico Esta parte del programa fue diseñada para mejorar la comprensión y el conocimiento de la amenaza y el riesgo sísmico, y para ayudar a cerrar la brecha entre la información producida en estudios detallados de amenaza y riesgo y su comunicación a una amplia variedad de partes interesadas (que van desde locales expertos con competencias para evaluar el riesgo sísmico, a los tomadores de decisiones responsables de la implementación de medidas de reducción del riesgo). a. Sitio web para la capacitación en línea de OpenQuake La capacitación en línea de OpenQuake se diseñó para diferentes tipos de audiencia con diversos antecedentes y experiencia. A través de esta plataforma, los participantes interactuaron con los equipos científicos y técnicos del GEM para conocer los principales conceptos de la evaluación del riesgo sísmico, así como las características básicas del software de OpenQuake. [English | Español ] b. Manual de OpenQuake en formato online El manual oficial se convirtió de látex al formato reStructuredText gracias al apoyo de @USAID. El nuevo manual está ahora en línea en formato HTML y se puede accederse en: [Webpage English ] c. Tutoriales en video sobre peligros sísmicos y análisis de riesgos usando OpenQuake El proyecto ha producido 15 videos de capacitación técnica utilizando el software de OpenQuake (en inglés y español), 7 videos con material para difundir los modelos y resultados de la evaluación del riesgo urbano en las ciudades TREQ y 2 videos para comunicar el riesgo sísmico al público en general. público. OQ Engine Video Tutorials [ English | Español ] d. Manual para realizar análisis de amenaza sísmica Este manual presenta los conceptos básicos de la metodología clásica de PSHA y el amplio espectro de alternativas para modelar la sismicidad y las incertidumbres (epistémicas y aleatorias) en el software de OpenQuake. La evaluación probabilística del peligro sísmico (PSHA) es la metodología principal para evaluar el peligro potencial que representan los terremotos. Los mapas de amenaza se utilizan ampliamente en los códigos sísmicos nacionales para la zonificación de la amenaza sísmica y las disposiciones de diseño estructural. [PDF English ] e. Capacitando a educadores TREQ ha colaborado con cinco profesores universitarios de América Latina para conceptualizar, crear e implementar un curso unificado para el estudio del riesgo sísmico a nivel universitario. Los folletos en inglés y español explican con más detalle el concepto detrás de esta iniciativa y describen los primeros resultados y experiencias de los profesores de Colombia, Costa Rica, El Salvador, Guatemala y México. [PDF English | Español ] Anchor 4 Comunicación y sensibilización sobre terremotos Las actividades de este componente se centraron en sensibilizar al público sobre la amenaza y el riesgo sísmico mediante la capacitación de un grupo diverso de profesionales en reducción del riesgo de desastres (RRD), junto con el personal a cargo de comunicar los riesgos al público, y mediante la realización de talleres comunitarios en áreas seleccionadas de las ciudades piloto. Artículos de noticias Eventos El seminario web Comprensión del riesgo sísmico a través del desarrollo de capacidades y el intercambio de conocimientos atrae a cientos de participantes de todo el mundo. [Article ] [Event page English | Español ] [Video ] Presentación del modelo PSHA nacional para la República Dominicana: un seminario web conjunto organizado por el Servicio Geológico Nacional Dominicano en cooperación con GEM, Oficina Nacional de Evaluación Sísmica y Vulnerabilidad de Infraestructura y la Oficina de Asistencia Humanitaria de USAID. [Event flyer Español ] [Video English | Español ] ---- Artículos Raising Earthquake Risk Awareness: TREQ’s community workshops for the general public Urban hazard assessment of selected cities in Latin America Local solutions to global problems: reducing disaster risk through collaboration and openness TREQ Project Updates: Site Effects Modelling and Urban Exposure Models USGS has joined the TREQ initiative for urban earthquake scenarios TREQ capacity building: OQ online training updates Jan-Feb 2021 TREQ2020 – Capacity development and OpenQuake online training, year in review TREQ OpenQuake Online Training: Earthquake Scenarios - Ground Motion Fields Sept 2020 Más en la sección GEM News a. Material didáctico para sensibilizar a la comunidad sobre el riesgo sísmico: Aplicación para el área Metropolitana del Valle de Aburrá (AMVA) [PDF Español ] b. Video para comunicar el riesgo de terremoto al público en general [English | Español ] c. Guía para profesores para el desarrollo de un curso introductorio de riesgo sísmico [PDF Español ] d. Perfiles de respuesta y mitigación de riesgos urbanos para las ciudades TREQ [Cali ] [Quito ] [Santiago ] Boletin informativo El boletín del proyecto TREQ tiene la intención de compartir actividades en evaluación de riesgos urbanos y materiales de capacitación y educación sobre riesgos de terremotos con una amplia gama de partes interesadas locales de la academia, los sectores público y privado, así como la sociedad civil en América Latina,el Caribe, y más allá. Newsletter no. 3 - May 2021 Newsletter no. 2 - September 2020 Newsletter no. 1 - March 2020 Maiden issue [English ] Maiden issue [Españo ] Anchor3 BUSINESS NEWS Concientizando el Riesgo: talleres para el público en general 1/4 BUSINESS NEWS Inicio del proyecto de marzo de 2020 1/4 BUSINESS NEWS Fotos de la formación OpenQuake Online de noviembre de 2020 1/2 BUSINESS NEWS Reuniones en Quito 1/10 BUSINESS NEWS Reuniones en Guayaquil 1/1 Publications Visión general TREQ Resumen Ejecutivo [English ] Evaluación de la amenaza sísmica Modelos probabilísticos de amenaza sísmica (PSHA) y conjuntos de datos para la evaluación de la amenaza a nivel urbano [English ] Modelo Probabilístico de Amenaza Sísmica para la República Dominicana [English | Español ] [Descargar Modelo ] Resultados de amenaza sísmica (condiciones en roca y en suelo [English ] Análisis de la amenaza sísmica a escala urbana [English ] Evaluación de Riesgo Sísmico Resumen ejecutivo sobre la evaluación del riesgo sísmico urbano para las ciudades de Quito, Cali y Santiago de los Caballeros [English ] Tipologías constructivas en Quito, Cali and Santiago de los Caballeros [Español ] Escenarios sísmicos Evaluación del escenarios de amenaza para sismos representativos en Quito, Cali y Santiago de los Caballeros [English ] Aplicaciones urbanas Deslizamientos y licuefacción inducidos por sismo en Cali [English ] Informes de la ciudad Evaluación de Riesgo Sísmico para el Distrito Metropolitano de Quito [Español ] Evaluación de Riesgo Sísmico para Santiago de Cali [Español ] Evaluación de Riesgo Sísmico para Santiago de los Caballeros [Español ] Formación y comunicación del riesgo sísmico Manual de capacitación sobre análisis probabilístico de riesgos sísmicos (PSHA) [English ] Material didáctico para sensibilizar a la comunidad sobre el riesgo sísmico. Aplicación para el área Metropolitana del Valle de Aburrá (AMVA) [Español ] Guía para profesores para el desarrollo de un curso introductorio de riesgo sísmico [Español ] Disclaimer The contents of this project website such as studies, reports, audio-visual, news articles, blogs, and other information or media products including those in the external links are made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the Global Earthquake Model (GEM) Foundation and do not necessarily reflect the views of USAID or the United States Government.

  • GEOINQUIRE | Global Earthquake Model Foundation

    Projects GEOINQUIRE GeoINQUIRE: Geosphere INfrastructures for QUestions into Integrated REsearch Versión en español English version Share Facebook LinkedIn Overview Anchor 6 Background The GeoINQUIRE project provides and enhances access to selected key data, products, and services, enabling the dynamic processes within the geosphere to be monitored and modelled at new levels of spatial and temporal detail and precision. Geo-INQUIRE benefits from a unique partnership of 51 partners consisting of major national research institutes, universities, national geological surveys, and European consortia. Geo-INQUIRE will enhance and make interoperable the activities of the involved partners and conduct dedicated training programs for their optimal use. A portfolio of 150 Virtual Access (VA) and Transnational Access (TA, both virtual and on-site) installations will be offered to the scientific community. The GEM Foundation is offering one of the Virtual Access services within the geohazard-and-multi-risk-assessment portfolio of services; this service will provide access to earthquake and secondary hazards impact data. More information: https://www.geo-inquire.eu/about/about-geo-inquire Duration: 2022 - 2026 Objectives The project aims to overcome cross-domain barriers, especially the land-sea-atmosphere environments, and will exploit innovative data management techniques, modelling and simulations methods, developments in AI and big data, and extend existing data infrastructures to disseminate these resources to the wider scientific community, including the EOSC landscape. Collaborators Please refer to: https://www.geo-inquire.eu/about/partners Funding partner: European Commission Location Potsdam, Germany Anchor 1 Anchor 5 Anchor 4 Anchor3 Publications

bottom of page